趣味数学故事之火柴游戏
一个最普通的火柴游戏就是两人一起玩,先置若干支火柴於桌上,两人轮流取,每次所取的数目可先作一些限制,规定取走最後一根火柴者获胜。
规则一:若限制每次所取的火柴数目最少一根,最多三根,则如何玩才可致胜?
例如:桌面上有n=15根火柴,甲﹑乙两人轮流取,甲先取,则甲应如何取才能致胜? 为了要取得最後一根,甲必须最後留下零根火柴给乙,故在最後一步之前的轮取中,甲不能留下1根或2根或3根,否则乙就可以全部取走而获胜。如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的火柴而赢了游戏。同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取後留下4根火柴,最後也一定是甲获胜。由上之分析可知,甲只要使得桌面上的火柴数为4﹑8﹑12﹑16...等让乙去取,则甲必稳操胜券。因此若原先桌面上的火柴数为15,则甲应取3根。(∵15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根(∵18-2=16)。
规则二:限制每次所取的火柴数目为1至4根,则又如何致胜?
原则:若甲先取,则甲每次取时,须留5的倍数的火柴给乙去取。
通则:有n支火柴,每次可取1至k支,则甲每次取後所留的火柴数目必须为k+1之倍数。
规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1﹑3﹑7,则又该如何玩法?
分析:1﹑3﹑7均为奇数,由於目标为0,而0为偶数,所以先取者甲,须使桌上的火柴数为偶数,因为乙在偶数的火柴数中,不可能再取去1﹑3﹑7根火柴後获得0,但假使如此也不能保证甲必赢,因为甲对於火柴数的奇或偶,也是无法依照己意来控制的。因为〔偶-奇=奇,奇-奇=偶〕,所以每次取後,桌上的火柴数奇偶相反。若开始时是奇数,如17,甲先取,则不论甲取多少(1或3或7),剩下的便是偶数,乙随後又把偶数变成奇数,甲又把奇数回覆到偶数,最後甲是注定为赢家;反之,若开始时为偶数,则甲注定会输。
通则:开局是奇数,先取者必胜;反之,若开局为偶数,则先取者会输。
规则四:限制每次所取的火柴数是1或4(一个奇数,一个偶数)。
分析:如前规则二,若甲先取,则甲每次取时留5的倍数的火柴给乙去取,则甲必胜。此外,若甲留给乙取的火柴数为5之倍数加2时,甲也可赢得游戏,因为玩的时候可以控制每轮所取的火柴数为5(若乙取1,甲则取4;若乙取4,则甲取1),最後剩下2根,那时乙只能取1,甲便可取得最後一根而获胜。
通则:若甲先取,则甲每次取时所留火柴数为5之倍数或5的倍数加2。
趣味数学故事之火柴游戏
栏目导航
- ·不言自明 梅森数
- ·用数学美衬托文学美-回环诗
- ·趣味数学“倒数诗”
- ·G代表0~9中哪一个数字?
- ·强盗的难题
- ·难倒银行专业理财师的小学一年级寒假数
- ·雷死人不偿命的寒假作业之脑筋急转弯型
- ·雷死人不偿命的寒假作业题之纯粹恶搞型
- ·小学三年级趣味数学题
- ·趣味数学:奇妙的圆走进战争
- ·小学三年级趣味数学竞赛复习题
- ·小学趣味数学题及答案
- ·五年级数学长方体和正方体
- ·二年级趣味数学 △折叠车
- ·数学家欧拉找到一笔画的规律是什么呢?
- ·商人与五顶帽子
- ·五年级趣味数学-用字母表示数
- ·关于数学中“0”的知识
- ·数学小知识:约数的个数
- ·两道数学题让你脑筋转起来
- ·数学竞赛试题 电子跳蚤
- ·数学趣味知识“莫比乌斯带”的神奇
- ·数学趣味知识 足球上的数学
- ·古印度的有趣数学题
- ·趣味数学知识 认识算盘
- ·趣味算术 特别的数
- ·趣味数学:黄金数的美妙之处
- ·小学趣味数学 上当的野猪