苏教版数学五年级第十册教学设计
浏览次数: 711次| 发布日期:06-12 12:01:53 | 小学五年级数学教案
标签:五年级数学教案,小学数学教案,小学数学教案设计,http://www.350xue.com
苏教版数学五年级第十册教学设计,
教 具 投影仪和棱长是1分米的正方体模型,如教材第26页的图。 教 学 内 容 和 过 程 教学札记 一、创设情境
填空:
①长方体体积= ;
②常用的体积单位有 、 、 ;
③正方体体积= 。
师:你知道每相邻的两个体积单位之间的进率是多少吗?今天我们就学习体积单位间的进率。(板书课题)
二、探索研究
1.小组学习——体积单位间的进率。
(1)出示:1个棱长是1分米的正方体模型教具。
提问:
当正方体的棱长是1分米时,它的体积是多少?
②当正方体的棱长是10厘米时,它的体积是多少?
③而1分米是多少厘米?1立方分米等于多少立方厘米?
小组合作填表:
正方体
棱长
1分米
=
10厘米
体积
1立方分米
=
1000立方厘米
小组汇报结论:1立方分米=1000立方厘米
同理得出:1立方米=1000立方分米
用填空的形式小结:
从上面可以看出,相邻两个体积单位之间的进率都是 。
(2).将长度单位、面积单位、体积单位加以比较(投影显示第26页的表)
先让学生填后并比较这三类单位相邻两个单位间的进率有什么不同?为什么?
(3)学习体积单位名数的改写。
先思考:
(1)怎样把高一级的体积单位的名数改写成低一级的体积单位的名数?
(2)怎样把低一级的体积单位的名数改写成高一级的体积单位的名数?
出示例3,并写成如下形式:
8立方米=( )立方分米 0.54立方米=( )立方分米
出示例4,并写成如下形式:
3400立方厘米=( )立方分米 96立方厘米=( )立方分米
学生独立思考,再小组讨论自己是怎样想和做的。
出示例3。(投影显示)
放手让学生独立审题并解答,再针对出现的问题重点讲解。
解法一:
1.8×1.5×0.01=0.027(立方米)
0.027立方米=27立方分米
解法二:
1.8米=18分米 1.5米=15分米 0.01米=0.1分米
18×15×0.1=27(立方分米)
三、巩固练习
将练习五的第1、2题填在书上,老师进行个别辅导后订正。
四、课堂小结。学生小结今天学习的内容。
五、课后作业
练习五的3、4题。
板
书
设
计
体积单位之间的进率
常用的体积单位及进率:
立方米、立方分米、立方厘米
1立方米 =1000立方分米
1立方分米=1000立方厘米
注意点:
高级单位的数转化成低级单位的数要乘以进率,低级单位的数转化成高级单位的数要除以进率。
在实际计算中要注意单位的统一。 教
学
后
记
苏教版数学五年级第十册教学设计由www.350xue.com收集及整理,转载请说明出处www.350xue.com
www.350xue.com
课 题 课题六:容积和容积单位 课 时 本课共 课时 本课为第 课时 总课时第 课时 课 时
目 标 ①使学生认识常用的容积单位:升、毫升。
②掌握升与毫升间的进率以及它们和体积单位的关系。
③理解容积和体积的概念既有联系又有区别。 教学及训练
重 点 容积和体积概念的联系与区别。 仪 器
教 具 容纳1升液体的量杯和1000毫升液体的量筒各一个。一个长20厘米、宽18厘米、高10厘米的长方体纸盒和木盒各一个。 教 学 内 容 和 过 程 教学札记 一、创设情境
1、填空。
(1) 叫做物体的体积。
(2)常用的体积单位有 、 、 ,相邻的两个体积单位间的进率是 。
2、一个长方体纸盒,它的长是2分米,宽是1.8分米,高1分米,它的体积是多少?
二、探索研究
1、教学容积的概念。
(1)老师将长方体纸盒的盖子打开,问:盒内是空的,可以装什么?
师:我们把这个纸盒所能容纳物体的体积,通常叫做它的容积,如:金鱼缸,里面可以放满水,在这里水的体积就是鱼缸的容积。
(2)学生举例。
①谁能举例说一说什么叫做容积?②从大家举的例子看,只有里面是空的、能够装东西的物体,它才有什么?如果一个长、正方体铁块,它们有容积吗?(板书:容积)
(3)容积的计算方法。
师:容积的计算方法,跟体积的计算方法相同,但要从里面量长、宽、高。
师:这是为什么?(出示一个木盒)
2、教学容积单位(板书课题)
(1)翻开书第28页,让学生看第三自然段。
板书:升 毫升
(2)出示量杯和量筒,倒入1升的水进行演示,让学生得出:
1升=1000毫升。
(3)容积单位与体积单位的关系。
1升=1立方分米 1毫升=1立方厘米
3、应用。
出示例4,指一名学生读题。
(1)分析理解题意:求“这个油箱可以装汽油多少升?”就是求这个油箱的什么?必须知道什么条件?是否具备?怎样算?结果是什么?怎么办?
(2)学生做完后集体订正。
6×4×3=72(立方分米)
72立方分米=72升
三、巩固练习
1、第28页的“练一练”中的第1题、第2题;
2、练习五的第5、6、7题。
四、课堂小结
学生小结今天学习的内容。
五、思考练习
做练习五的第8、9、10题。
板
书
设
计
容积和容积单位
1、什么是容积?
2、哪些物体有容积?
3、怎样计算容积?
容积单位:
1升=1立方分米
1毫升=1立方厘米
教
学
后
记
课 题 1、约数和倍数的意义
(一)约数和倍数的意义 课 时 本课共 课时 本课为第 课时 总课时第 课时 课 时
目 标 ①使学生进一步理解整除的意义。②使学生掌握整除、约数与倍数的概念,以及它们之间的相互依存关系,渗透辨证唯物主义思想。③培养学生抽象概括与观察思考的能力。 教学及训练
重 点 重点:约数和倍数的意义
难点:理解除尽和整除,约数和倍数等概念间的联系和区别。 仪 器
教 具 教 学 内 容 和 过 程 教学札记 一、创设情境
1、计算下面三组题。
(1)23÷7= (2)6÷5= (3)15÷3=
11÷3= 1.8÷3= 24÷2=
2、观察并回答。
上面哪个算式中的第一个数能被第二个数整除?
在什么情况下,才可以说“一个数能被另一个数整除”?
(3)如果用整数a表示被除数,整数b(b≠0)表示除数,可以怎样说?(让学生看教材第49页关于“整除”的一段话)
3、思考:我们在说一个数能被另一个数整除时,必须具备哪几个条件?
①被除数、除数都是整数,除数不等于0
明确三点 ②商必须是整数 缺一不可
③商的后面没有余数
4、除尽与整除的区别与联系。
(1)像6÷5=1.2 1.8÷3=0.6我们只能说第一个数能被第二个数 。
(2)除尽 被除数和除数(不等于0),不一定是整数,商是有限小数,没有余数。
整除 被除数和除数(不为0)都是整数,商是整数,没有余数。(三整无余)
师:一个数能被另一个数整除表示的是两个整数之间的一种关系,它们还有另一种关系,这就是我们今天要学习的约数和倍数关系(板书课题:约数和倍数的意义)
二、探索研究
1.小组学习——约数和倍数的意义。
(1)让学生看教材第50页有关约数和倍数的一段话。
(2)小组讨论:两个数在什么情况下才有约数和倍数关系?“约数和倍数是相互依存的”是什么意思?
(3)在复习的第1题中,请你指出哪个数是哪个数的倍数,哪个数是哪个数的约数?为什么?
(4)倍与倍数意义一样吗?
如:15是3的倍数,表示15 能被3整除。
1.5是0.3的5倍,5倍表示1.5除以0.3的商。
(5)注意事项。让学生看教材第50页的注意。
三、课堂实践
1.做教材第51页的“做一做”。
2.做练习十一的第1题。
3.做练习十一的第2题。
4.做练习十一的第3题。
5.做练习十一的第4题。
60的约数有 。
6的倍数有 。
四、课堂小结
学生小结今天学习的内容。
板
书
设
计
教
学
后
记 给学生以丰富的材料,让他们在感性认识的基础上,通过主动的探索学习掌握概念。
课 题 (二)一个数的约数和倍数的求法 课 时 本课共 课时 本课为第 课时 总课时第 课时 课 时
苏教版数学五年级第十册教学设计
教 具 投影仪和棱长是1分米的正方体模型,如教材第26页的图。 教 学 内 容 和 过 程 教学札记 一、创设情境
填空:
①长方体体积= ;
②常用的体积单位有 、 、 ;
③正方体体积= 。
师:你知道每相邻的两个体积单位之间的进率是多少吗?今天我们就学习体积单位间的进率。(板书课题)
二、探索研究
1.小组学习——体积单位间的进率。
(1)出示:1个棱长是1分米的正方体模型教具。
提问:
当正方体的棱长是1分米时,它的体积是多少?
②当正方体的棱长是10厘米时,它的体积是多少?
③而1分米是多少厘米?1立方分米等于多少立方厘米?
小组合作填表:
正方体
棱长
1分米
=
10厘米
体积
1立方分米
=
1000立方厘米
小组汇报结论:1立方分米=1000立方厘米
同理得出:1立方米=1000立方分米
用填空的形式小结:
从上面可以看出,相邻两个体积单位之间的进率都是 。
(2).将长度单位、面积单位、体积单位加以比较(投影显示第26页的表)
先让学生填后并比较这三类单位相邻两个单位间的进率有什么不同?为什么?
(3)学习体积单位名数的改写。
先思考:
(1)怎样把高一级的体积单位的名数改写成低一级的体积单位的名数?
(2)怎样把低一级的体积单位的名数改写成高一级的体积单位的名数?
出示例3,并写成如下形式:
8立方米=( )立方分米 0.54立方米=( )立方分米
出示例4,并写成如下形式:
3400立方厘米=( )立方分米 96立方厘米=( )立方分米
学生独立思考,再小组讨论自己是怎样想和做的。
出示例3。(投影显示)
放手让学生独立审题并解答,再针对出现的问题重点讲解。
解法一:
1.8×1.5×0.01=0.027(立方米)
0.027立方米=27立方分米
解法二:
1.8米=18分米 1.5米=15分米 0.01米=0.1分米
18×15×0.1=27(立方分米)
三、巩固练习
将练习五的第1、2题填在书上,老师进行个别辅导后订正。
四、课堂小结。学生小结今天学习的内容。
五、课后作业
练习五的3、4题。
板
书
设
计
体积单位之间的进率
常用的体积单位及进率:
立方米、立方分米、立方厘米
1立方米 =1000立方分米
1立方分米=1000立方厘米
注意点:
高级单位的数转化成低级单位的数要乘以进率,低级单位的数转化成高级单位的数要除以进率。
在实际计算中要注意单位的统一。 教
学
后
记
苏教版数学五年级第十册教学设计由www.350xue.com收集及整理,转载请说明出处www.350xue.com
www.350xue.com
课 题 课题六:容积和容积单位 课 时 本课共 课时 本课为第 课时 总课时第 课时 课 时
目 标 ①使学生认识常用的容积单位:升、毫升。
②掌握升与毫升间的进率以及它们和体积单位的关系。
③理解容积和体积的概念既有联系又有区别。 教学及训练
重 点 容积和体积概念的联系与区别。 仪 器
教 具 容纳1升液体的量杯和1000毫升液体的量筒各一个。一个长20厘米、宽18厘米、高10厘米的长方体纸盒和木盒各一个。 教 学 内 容 和 过 程 教学札记 一、创设情境
1、填空。
(1) 叫做物体的体积。
(2)常用的体积单位有 、 、 ,相邻的两个体积单位间的进率是 。
2、一个长方体纸盒,它的长是2分米,宽是1.8分米,高1分米,它的体积是多少?
二、探索研究
1、教学容积的概念。
(1)老师将长方体纸盒的盖子打开,问:盒内是空的,可以装什么?
师:我们把这个纸盒所能容纳物体的体积,通常叫做它的容积,如:金鱼缸,里面可以放满水,在这里水的体积就是鱼缸的容积。
(2)学生举例。
①谁能举例说一说什么叫做容积?②从大家举的例子看,只有里面是空的、能够装东西的物体,它才有什么?如果一个长、正方体铁块,它们有容积吗?(板书:容积)
(3)容积的计算方法。
师:容积的计算方法,跟体积的计算方法相同,但要从里面量长、宽、高。
师:这是为什么?(出示一个木盒)
2、教学容积单位(板书课题)
(1)翻开书第28页,让学生看第三自然段。
板书:升 毫升
(2)出示量杯和量筒,倒入1升的水进行演示,让学生得出:
1升=1000毫升。
(3)容积单位与体积单位的关系。
1升=1立方分米 1毫升=1立方厘米
3、应用。
出示例4,指一名学生读题。
(1)分析理解题意:求“这个油箱可以装汽油多少升?”就是求这个油箱的什么?必须知道什么条件?是否具备?怎样算?结果是什么?怎么办?
(2)学生做完后集体订正。
6×4×3=72(立方分米)
72立方分米=72升
三、巩固练习
1、第28页的“练一练”中的第1题、第2题;
2、练习五的第5、6、7题。
四、课堂小结
学生小结今天学习的内容。
五、思考练习
做练习五的第8、9、10题。
板
书
设
计
容积和容积单位
1、什么是容积?
2、哪些物体有容积?
3、怎样计算容积?
容积单位:
1升=1立方分米
1毫升=1立方厘米
教
学
后
记
课 题 1、约数和倍数的意义
(一)约数和倍数的意义 课 时 本课共 课时 本课为第 课时 总课时第 课时 课 时
目 标 ①使学生进一步理解整除的意义。②使学生掌握整除、约数与倍数的概念,以及它们之间的相互依存关系,渗透辨证唯物主义思想。③培养学生抽象概括与观察思考的能力。 教学及训练
重 点 重点:约数和倍数的意义
难点:理解除尽和整除,约数和倍数等概念间的联系和区别。 仪 器
教 具 教 学 内 容 和 过 程 教学札记 一、创设情境
1、计算下面三组题。
(1)23÷7= (2)6÷5= (3)15÷3=
11÷3= 1.8÷3= 24÷2=
2、观察并回答。
上面哪个算式中的第一个数能被第二个数整除?
在什么情况下,才可以说“一个数能被另一个数整除”?
(3)如果用整数a表示被除数,整数b(b≠0)表示除数,可以怎样说?(让学生看教材第49页关于“整除”的一段话)
3、思考:我们在说一个数能被另一个数整除时,必须具备哪几个条件?
①被除数、除数都是整数,除数不等于0
明确三点 ②商必须是整数 缺一不可
③商的后面没有余数
4、除尽与整除的区别与联系。
(1)像6÷5=1.2 1.8÷3=0.6我们只能说第一个数能被第二个数 。
(2)除尽 被除数和除数(不等于0),不一定是整数,商是有限小数,没有余数。
整除 被除数和除数(不为0)都是整数,商是整数,没有余数。(三整无余)
师:一个数能被另一个数整除表示的是两个整数之间的一种关系,它们还有另一种关系,这就是我们今天要学习的约数和倍数关系(板书课题:约数和倍数的意义)
二、探索研究
1.小组学习——约数和倍数的意义。
(1)让学生看教材第50页有关约数和倍数的一段话。
(2)小组讨论:两个数在什么情况下才有约数和倍数关系?“约数和倍数是相互依存的”是什么意思?
(3)在复习的第1题中,请你指出哪个数是哪个数的倍数,哪个数是哪个数的约数?为什么?
(4)倍与倍数意义一样吗?
如:15是3的倍数,表示15 能被3整除。
1.5是0.3的5倍,5倍表示1.5除以0.3的商。
(5)注意事项。让学生看教材第50页的注意。
三、课堂实践
1.做教材第51页的“做一做”。
2.做练习十一的第1题。
3.做练习十一的第2题。
4.做练习十一的第3题。
5.做练习十一的第4题。
60的约数有 。
6的倍数有 。
四、课堂小结
学生小结今天学习的内容。
板
书
设
计
教
学
后
记 给学生以丰富的材料,让他们在感性认识的基础上,通过主动的探索学习掌握概念。
课 题 (二)一个数的约数和倍数的求法 课 时 本课共 课时 本课为第 课时 总课时第 课时 课 时
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] 下一页
苏教版数学五年级第十册教学设计
[审核:三人行学习网]
- 苏教版数学五年级第十册教学设计
- › 苏教版数学七年级期末复习教案(五)
- › 苏教版数学七年级期末复习教案(三)
- › 苏教版数学七年级期末复习教案(四)
- › 苏教版数学七年级期末复习教案(一)
- › 苏教版数学七年级期末复习教案(二)
- › 苏教版数学五年级第十册教学设计
- 在百度中搜索相关文章:苏教版数学五年级第十册教学设计
- 在谷歌中搜索相关文章:苏教版数学五年级第十册教学设计
- 在soso中搜索相关文章:苏教版数学五年级第十册教学设计
- 在搜狗中搜索相关文章:苏教版数学五年级第十册教学设计
tag: 小学五年级数学教案,五年级数学教案,小学数学教案,小学数学教案设计,免费教案 - 数学教案 - 小学五年级数学教案